Overview

- New South Wales hosts large, ultrapure, cryptocrystalline and nodular deposits, as well as widespread regolith-hosted replacement deposits.
- Boutique opportunities exist for agricultural and specialist applications.
- World magnesite supply has been impacted by modernisation in China reducing its export capacity. Western nations are seeking other suppliers, so there is strong demand from local and international markets.

Geological setting

Magnesite (MgCO_3) is rhombohedral (47.8% MgO and 52.2% CO$_2$ when pure) and occurs as a solid solution with siderite (FeCO_3).

Deposits in New South Wales are typically:
- ultrafine-grained (crypto- to micro-crystalline or ‘bone’)
- coarse-grained ‘sparry’

Development opportunities

- Large, high-grade colluvial channel-hosted deposits (e.g. Thuddungra and nearby Noakes, Baileys Magnesite deposit etc.)
- Weathered ultramafic intrusions (e.g. Fifield)
- Nepheline olivine basalts and leucitites (Cargelligo deposits, e.g. Whitton Road)
- Vein-style silica-carbonate deposits (Piedmont and Attunga)

Exploration opportunities

- Clarence–Moreton Basin: Sedimentary deposits may occur near the Gordonbrook Serpentinite
- Great Serpentinite Belt: smaller vein-style (Krubath-type) are widespread
- Delamerian Orogen: Potential for large, sparry deposits
Project highlights

Thuddungra Magnesite mine: (measured resource) 3.8 Mt @ 55.1%, MgCO₃. Currently produces 30 000 tpa (~12% of national supply). The ore is cryptocrystalline and nodular, of exceptional quality (>99.8% MgCO₃) and suitable for refractories and pharmaceuticals. It includes lower-grade bulk material suitable for a wide range of applications.

Additional ore occurs at the nearby Noakes and Baileys Magnesite deposits.

Noakes: (measured resource) 12.6 Mt @ 43.0% MgCO₃.

Fifield Magnesite mine produced ~895 000 tonnes hard magnesite (99.19% MgO calcined).

The nearby BHP Magnesite mine produced ~1 Mt of magnesite.

Cincinatti mine has existing mine infrastructure.

Cargelligo (Whitton Road deposits) has numerous deposits of 93.4–97.3% MgCO₃ with ferric oxide from 0.5–1.8%.

World magnesia production (from magnesite) by country

- China 49%
- Russia 12%
- North Korea 2%
- India 3%
- Greece 2%
- USA 2%
- Brazil 5%
- Austria 5%
- Australia 3%
- Turkey 6%
- Spain 3%
- Others 3%
- Slovakia 5%

Total resources in Australia = 330 Mt

- 69% dead-burned magnesia
- 31% caustic calcined magnesia

Source: http://www.indmin.com/magnesia.html

Contact: mra.info@geoscience.nsw.gov.au | +61 2 4963 6500

Disclaimer: The information contained in this publication is based on knowledge and understanding at the time of writing (October 2014), using publicly available information. Because of advances in knowledge, users are reminded of the need to ensure that information upon which they rely is up to date. The information contained in this publication may not be or may no longer be aligned with government policy nor does the publication indicate or imply government policy. No warranty about the accuracy, currency or completeness of any information contained in this document is inferred (including, without limitation, any information in the document provided by third parties). While all reasonable care has been taken in the compilation, to the extent permitted by law, the State of New South Wales (including the NSW Department of Planning and Environment) exclude all liability for the accuracy or completeness of the information, or for any injury, loss, or damage whatsoever (including without limitation liability for negligence and consequential loss) suffered by any person acting, or purporting to act, in reliance upon anything contained herein. Users should rely upon their own advice, skills, interpretation and experience in applying information contained in this publication. The product trade names in this publication are supplied on the understanding that no preference between equivalent products is intended and that the inclusion of a product name does not imply endorsement by the Department over any equivalent product.